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A series representation of the relation that links the eigenvalues of the Orr-Sommerfeld 
equation is developed. This enables the complex frequency parameter to be expressed as a 
double series in terms of the Reynolds number and wavenumber, both of which are treated 
as complex variables. The complex coefficients arising in this series are determined by contour 
integration for the case of the eigenfunctions for a Blasius boundary layer profile. A non- 
linear transformation is applied to the partial summations formed from the series in order to 
improve the convergence, and so to enable predictions of high accuracy to be made from 
only a few terms. Eigenvalues calculated by this technique are compared with those ob- 
tained directly from the Orr-Sommerfeld equation. The power of the technique is de- 
monstrated by various graphical displays of the amplification contours for both temporal 
and spatial modes. 

1. INTRODUCTION 

At high Reynolds numbers weak disturbances arise in laminar boundary layers as a 
result of excitation by turbulent fluctuations in the free-stream flow, or by vibrations 
of the boundary. The resulting disturbances, which take the form of traveling waves 
can be unstable in such a way that the amplitude of the associated velocity fluctuations 
imposed on the steady laminar boundary layer flow increases as the waves propagate 
downstream. Initially the amplitudes of these fluctuations will be too small for their 
nonlinear stress components to be important as far as the development of the mean 
boundary layer flow is concerned, but eventually, after the disturbance has undergone 
sufficient amplification, the Reynolds stresses will become large enough to modify the 
mean flow. Higher harmonics are also generated and the complex nonlinear inter- 
actions that then take place, together with the randomly excited secondary instabilities, 
ultimately lead to turbulent flow. 

This paper is concerned with predictions of the possible modes of instability that 
occur during the linear phase of the above process, and in particular with the calcula- 
tion of the rates at which the various traveling wave disturbances amplify. 

Even when the equations of motion that describe the development of these small 
periodic disturbances are linearized, they remain partial differential equations and 
their solution is by no means straightforward. At the relatively high Reynolds numbers 
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at which instability occurs, the mean boundary layer flow changes in thickness 
relatively slowly in the downstream direction, and the approximation is therefore 
commonly made, that as far as the behavior of the perturbation is concerned, the 
boundary layer can be treated locally as a parallel flow. With this simplification the 
equation defining the disturbance reduces to an ordinary differential equation, which 
can be solved numerically without very much difficulty, although the operation is 
still time consuming. The equation is known as the Orr-Sommerfeld equation, and 
solutions of it that are compatible with the usual hydrodynamic boundary condition 
at the wall and in the free stream lead to a characteristic function defining the eigen- 
values. The behavior of any particular mode propagating along the boundary layer 
is then given in terms of integrals of these local estimates of the wave length and 
amplification rate. Concern has often been expressed over the validity of this “quasi- 
parallel” approach to the prediction of the spatial development of a wave over large 
streamwise distances. On solving the full linearized partial differential equations by a 
multiple scale technique, where the unstable perturbations of a nearly parallel flow 
are expanded in terms of a suitable small parameter defining the deviation from the 
parallel, it is found that the zero-order term is precisely that of the locally parallel 
flow solution. A first-order correction to this can be provided by a scaling factor that 
is a function of the streamwise distance. Although it is found that this correction term 
lowers the critical Reynolds number slightly, its overall influence on the growth rate 
is small and calculations of amplification based on the zero-order analysis are suffi- 
ciently accurate for most practical cases. In the following treatment the locally parallel 
mean flow treatment will be used. Even with the foregoing simplifying approximations 
it turns out that predicting the evolution of even a single unstable traveling wave, 
defined in terms of its frequency and spanwise wavelength, can be quite a lengthy 
computation, because eigenvalues are required at a large number of streamwise 
locations. It is shown in this paper how series expansions of the eigenvalue relations 
can be used to reduce the effort in calculations that involve large numbers of eigen- 
values. This technique is applied to the instability modes that arise in the Blasius 
boundary layer velocity profile. 

A knowledge of the amplification rates of the various unstable modes can be useful 
when attempting to estimate the most likely position of transition to a turbulent 
flow. In fact, since most of the amplification takes place in the linear regime, reasonably 
valid predictions of the overall growth of a disturbance can be made from theories 
that neglect the later nonlinear behavior. Thus, although the final phase of the transi- 
tion process is not at all well understood, estimates of the position where transition 
eventually occurs may be made on the basis of amplification factors computed from 
linear stability theory. Simple transition prediction rules like the “eg” law rely on 
the idea that transition occurs when the overall growth of naturally occurring distur- 
bances reaches a given level. The direct computation of overall growth factors for a 
range of wavenumbers and frequencies can be very expensive in computer time, and 
ways of reducing this are woth considering. 

A rapid way of calculating eigenvalues can also be invaluable when making predic- 
tions of the evolution of more complex linear disturbances. For example, a simple 
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wave packet initiated by an impulsive excitation at a point can be synthesized by a 
summation of traveling wave modes of all frequencies and spanwise wave numbers [l]. 
This type of calculation can also involve a lot of computational effort when the 
eigenvalues are calculated individually from the differential equation. The asymptotic 
description of a wave packet also requires values of various derivatives, like the 
group velocity, and again if these are obtained from the basic differential equation 
the processes take rather a long time [2]. The series method presented here lends 
itself particularly well to both of the above types of calculation. 

2. ANALYSIS 

In a previous paper by Gaster and Jordinson [3] the series technique was used to 
define the eigenvalue relationships for the two-dimensional modes derived from the 
Orr-Sommerfeld equation for a Blasius profile at a fixed boundary layer Reynolds 
number of 1000. In that case the disturbance was represented by a stream function 
of the form &y, 01, /3) expi (ax - ,&) where y is normal to the boundary and x is in 
the stream direction. The differential equation for 4(v) is 

(d(y)- ff?)(l#" - a"#- cxV"(y)c$ = -$p - 2dqs" + a"$), (1) 

where the local mean flow velocity profile is given by U(y). The wave number a: 
and the frequency parameter /3 that arise in the above equation have eigenvalues 
defined by a characteristic function of the form F(ol, /3) = 0. Both parameters may be 
considered to be complex variables; temporal modes are defined by those with j? 
complex and (II real, while spatial ones have real p and complex (II. In the Blasius 
boundary layer flow problem there is only one unstable mode, and the ensuing work 
is concerned solely with the evaluation of this lowest mode. For this one discrete 
mode it was shown in [3] how F(a, ,B) can be expanded about an arbitrary point 
(01~) /3,,) as Taylor series in (CY - 01~) and (/I - /lo). It is then possible to express j3 as a 
series in (a - CL,,), or (Y as (fi - ,3,,), except in those regions where there are branch 
points. There must, of course, always be branch points through which links with 
higher modes occur. In those regions where an analytic behavior does exist, the 
coefficients of the power series can be found by appropriate contour integrations. The 
above formulation of the characteristic equation was used to provide a link between 
purely spatial and purely temporal modes. 

Here we consider a more general problem of the eigenvalues of the Orr-Sommerfeld 
equation when the Reynolds number, R, is also treated as an additional complex 
parameter. The resulting characteristic function then becomes F(ol, ,8, R), and as in 
[3], one can expect /3 to be a analytic function of both ac and R in restricted regions 
of the 01 and R planes. It turns out to be more convenient to use the parameters that 
occur naturally in the basic equation, and to express /3/oc as a function of ~9 and aR. 
This formulation is especially convenient when extending the method to oblique 
waves. 
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3. THE EXPANSION 

In regions of the a2-aR planes where there are no singularities, /~/LX will be an 
analytic function of these parameters and can be expressed as a sum of general 
solutions of the form 

A,,rlnei~elr2meime2, (2) 

where rleiel = (aR - (aR),J, rzeiez = (a2 - 01,,~), and the subscript 0 denotes the 
values of a parameter at the origin of the expansion. A,, is in general a complex 
coefficient. In [3] the coefficients of the power series defining fl in terms of 01 were 
determined from the Fourier transform of a number of discrete evaluations of p at 
points equally spaced around a circle in the 01 plane. Provided a sufficient number of 
discrete points was used, the resulting finite series adequately represented the function 
within the circular regions. In this extension of [3] the same procedure has been 
adopted to obtain the A,, coefficients arising in Eq. (2), but here circuits had to be 
made in both the 01~ and aR planes. N points were chosen equally spaced around a 
circular region in the 01~ plane, and at each location csR was also varied around a 
circular contour in M steps. At each of these N, M values of the parameters a2 and 
olR the frequency parameter /3 was evaluated. The resulting double series contained 
A,, coefficients for n up to N/2 and m to M/2, making a total of 400 in the present 
case. 

4. COMPUTATIONS 

A Blasius boundary layer profile defined by the differential equation 2f”’ +#” = 0 
was used as the mean flow in the Orr-Sommerfeld equation, where U/Urn =f’($ and 
7 =JJ(V,/VX)~I~ with th e b oundary conditions f(0) = f’(0) = 0 and f’(y) -+ 1 for 
large 7. U, is the freestream velocity, x is the distance from the leading edge, and v is 
the kinematic viscosity. For the subsequent solution of the Orr-Sommerfeld equation, 
f’(q) andf”‘(7) were required at 640 equispaced intervals within the range 0 < 77 -C 10. 
A Runge-Kutta integration scheme was used to solve the differential equation for f 
with iteration on the value off”(O) until the outer boundary condition was satisfied.’ 
The displacement thickness 6*, was found to be 

S* = 1.72078766(x~/U,)'/~. 

Eigenvalues of the Orr-Sommerfeld equation for the appropriate values of aR and 
cy2 were then evaluated by a shooting technique which used the previously stored 
values off’ and f at the 640 steps in the range r) from 0 to 10. For specific values of 

1 Although the solution of this equation for arbitrary f”(0) can be scaled with a “constant of 
homology” to fit the outer boundary behaviour, the integration range and step length cannot then 
easily be set to predetermined values. 
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/3, a, and R, the two decaying solutions determined analytically in the free stream 
were numerically integrated towards the boundary wall by a Runge-Kutta scheme 
over 320 equispaced intervals. Single precision arithmetic (11 decimal digits on the 
KDF9) was used in conjunction with a filtering scheme designed to remove the 
spurious divergent mode that can allow rounding errors to build up and contaminate 
the integration. The determinant defining the boundary conditions was reduced to a 
very small value by modifying p through a Newton-Raphson iteration scheme. Values 
obtained from this procedure for three different values of 01 and R are compared 
below with values given by Davey which are accurate to 8 decimal places. The eigen- 
values obtained by the present method appear to be accurate to 7 decimal places. 
The differences probably arise because fewer integration steps were used in the present 
exercise. 

Case 01 R Values of t% and Pi Values given by Davey 

(a) 0.3 500 0.11930374 -0.ooo27997 0.11930376 -0.ooo27998 
(b> 0.2 1500 0.06312288 0.00315665 0.06312291 0.00315663 
(4 0.15 3000 0.04021914 0.00278070 0.04021919 0.00278068 

5. THE SERIES 

N and M were chosen to be equal to 40, and values of /3 were computed by the 
shooting technique for all 1,600 values of N, M, equispaced around circles in the 
o? and CYR planes, where (a@, = 460; (LX): = 0.063 and the two radii are r, = 225; 
r2 = 0.04275. These values were used in the calculation of the 400 A,, coefficients. 
Figure 1 shows how the modulus of these coefficients depends on both n and m. 
Since the modulus falls fairly rapidly with respect to both of these parameters, the 
series representation of an eigenvalue will be a good one when aR and 01~ lie within 
the regions defined above, and the closer these parameters are to (aR), and (LX): , the 
better the rate of convergence of the series and the more accurate the result. In order 
to examine the convergence of the sum of terms (2) it is convenient to define the qth 
partial sum of the double series as 

S(q) = i i A,,(aR - (aR),Jn(a2 - ao2)". 
n=o m=o 

(3) 

For case (b), where a: = 0.2 and the Reynolds number is 1500, the sequence is given 
in Table I. The series has converged to a limit that is consistent to eight decimal 
places with the value obtained by direct solution of the Orr-Sommerfeld equation. 
Since the same numerical integration procedure was also used to calculate the N, A4 
eigenvalues that formed the coefficients, this value can be considered to be “exact” as 
far as assessing the accuracy of the series. 
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FIG. 1. The modulus of the Fourier coefficients A,, 

TABLE I 

4 S,(q) S,(q) 

0 0.06446508 0.0032261 I 

1 0.06331076 0.00399932 

2 0.06314974 0.00343594 

3 0.063 12942 0.00324496 

4 0.06312509 0.00318464 

5 0.06312373 0.00316559 

6 0.06312321 0.00315953 

I 0.06312301 0.00315758 

8 0.06312293 0.00315695 

9 0.06312289 0.00315675 

10 0.063 12288 0.003 15668 

11 0.06312288 0.00315666 

12 0.06312288 0.00315665 

Exact value 0.063 12288 0.00315665 
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A more demanding test of the series solution occurs when the values of 012 or aR lie 
towards the edge, or even outside, the original circular contour regions. Such an 
example is provided by case (a), where the radius rl is 1.216. Convergence is quite 
rapid with respect to m, but is slow as far as n is concerned, and it is convenient to 
define partial sums with respect to 12 as 

S(q) = i f A,,(cuR - (aR),)“(cS - ~10’)~. 
n=o nko 

TABLE II 

W Sk) S&7) 

0 0.10258149 0.00243754 

I 0.11188303 0.00411893 

2 0.11557909 0.00263507 

3 0.11731007 0.00167125 

4 0.11819797 0.00098586 

5 0.11867527 0.0005426 1 

6 0.11893995 0.00025283 

7 0.11909018 0.00006551 

8 0.11917686 -0.00005589 

9 0.11922759 -0.00013448 

10 0.11925762 -0.00018542 

11 0.11927557 -0.00021847 

12 0.11928640 -0.00023994 

13 0.11929298 -0.00025389 

14 0.11929702 -0.00026297 

Exact value 0.11930374 -0.00027997 

(4) 

The series (Table 11) seems to be converging towards the exact value, but the 14th 
partial sum is still only correct to four decimal places. Shanks [4] discusses a number 
of possible nonlinear operations that can be used to improve the rate of convegence 
of series. The simplest of these operations provides a new sum, s(q), from the relation 

w = a - 1) S(q + 1) - WI) 
S(q - 1) + S(q + 1) - 2S(q) . 

This transformation has been applied to the series in Table II, and the resulting values 
of the real and imaginary parts of the new series are tabulated in the first columns of 
Tables III and IV, respectively. The new series in column (i) is certainly more conver- 
gent than the original one, and it seems sensible therefore to repeat the process 
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TABLE III 

0.11629130 

0.11871322 

0.11896858 

0.11918281 

0.11923932 

0.11927317 

0.11928764 

0.11929536 

0.11929911 

0.11930118 

0.11930228 

0.11930291 

0.11930326 

0.11883430 

0.11917761 

0.11921644 

0.11929081 

0.11929113 

0.11930307 

0.11930239 

0.11930365 

0.11930358 

0.11930369 

0.11930379 

0.11915254 

0.11926239 0.11926279 

0.11928166 0.11929784 0.11929763 

0.11929793 0.11930139 0.11930280 0.11930341 

0.11930180 0.11930348 0.11930349 0.11930364 0.11930358 -____ 
0.11930317 0.11930361 0.11930364 0.11930351 --- 
0.11930353 0.11930367 0.11930360 

0.11930364 0.11930355 

0.11930368 

TABLE IV 

0) (ii) (iii) (iv) (4 (vi) (vii) 
_-.-~~ ~-~ ~~-~~ 

0.00027611 

0.00034455 -0.00029420 

-0.00020326 -0.00010700 -0.00025586 

-0.00018859 -0.00028701 -0.00023467 -0.00028159 

-0.00025257 -0.00024862 -0.00027685 -0.00027000 -0.00028146 

-0.00026186 -0.00028625 -0.00027618 -0.00028161 -0.00027934 -0.00028014 

-0.00027217 -0.00027550 -0.ooO27961 -0.00027936 -0.00027999 -0.00027987 -0.00027992 

-0.00027558 -0.00028095 -0.00027968 -0.00028007 -0.00027991 -0.00027987 

-0.00027779 -0.00027946 -0.00027991 -0.00027986 -0.00027993 --- 

-0.00027878 -0.00028005 -0.00027989 -0.00027993 

-0.00027934 -0.00027995 -0.00028014 ----- 

-0.00027963 -0.ooO28006 -----. 
-0.00027981 
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successively to each new series until a final limiting value is formed. This operation is 
illustrated in Tables III and IV, where successive columns contain the series which 
has been derived from the previous column. In this example, at least, these operations 
provide a final estimate in column (vii) that is very close to the “exact” eigenvalue. 
It is sometimes possible to improve the accuracy still further by repeating the above 
procedure on the “diagonal” elements of the arrays formed from the last value in each 
column which are shown underlined in Tables III and IV. The result of applying the 
operation to this series of diagonal elements gives finally 

pr = 0. I 1930374 and fli = -0.00027995, 

which are only in error by 2 in the eight decimal place, and provides a great improve- 
ment over the values originally estimated in Table II. 

The third example (c) is also of the above type, but in this case convergence is slow 
with respect to m instead of n, because here (Ye - 01~~ is large. The result of applying 
the Shanks process to the partial sums with respect to m is 

,!3, = 0.04021916 and ,$ = 0.00278070, 

which may be compared with the direct Orr-Sommerfeld solution 

8,. = 0.04021914 and ,& = 0.00278070. 

TABLE V 

4 .M?) Sdq) 

0 0.09669762 0.00483926 

1 0.09063906 0.00029795 
2 0.09656850 -0.00302813 
3 0.09195843 -0.00014283 
4 0.09545608 -0.00297762 
5 0.09273801 -0.00@#554 
6 0.09489111 -0.00278178 
7 0.09315156 -0.00060530 
8 0.09457801 -0.00260579 
9 0.09339249 -0.00076808 

10 0.09438862 -0.00245878 
11 0.09354325 -0.00090214 
12 0.09426702 -0.00233695 
13 0.09364219 -0.00101313 
14 0.09418591 -0.00223603 

Exact value 0.09393234 -0.00164860 
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A final example, (d), is given for a case where the original series is barely converging 
at all. Table V contains the first 14 terms of the series of partial sums defined by (3) 
for 01 = 0.3 and R = 3,000. The final result obtained by repeatedly applying the 
transformation to this series is 

pT = 0.09393246 and ,C& = -0.00164863 

and the error lies in the seventh decimal place. 
The nonlinear transformation defined by (5) applies to a one-dimensional array of 

numbers and before the process can be used on a double series some manipulation 
is needed to reduce this to an appropriate form. When the series converges very 
rapidly in one dimension the procedure adopted in examples (b) and (c) is appropriate, 
and when convergence is similar in both parameters perhaps the summation scheme 
that was used in (d) is a sensible choice. Another way of reducing the double summation 
to a single sequence is to sum along diagonals of the array so that the qth element 
contains all the terms in the series with n + m up to q, 

This form, which has been used to calculate all the results that are to be presented 
here, is suggested by the diagonal character of the coefficients shown in Fig. I. 
Although this way of summing the series does not always produce as high an accuracy 
as can be achieved in some cases by other schemes, less coefficients are used and the 
process is consequently faster. For the four test cases this method gave the values 

(a) 0.11930216 -0.00027987 

(b) 0.06312288 0.003 15665 

(c) 0.04021912 0.00278071 

(d) 0.09393452 -0.00164789 

which are within one part in 1O-6 of the exact values. 

6. APPLICATIONS 

To demonstrate the power of the series approach discussed in the last section some 
examples are presented that require the evaluation of a large number of eigenvalues. 
First, amplification contours for temporal modes, pi , are displayed in Fig. 2 with 
axes 01 and Reynolds number R. The phase velocity information for these modes is 
also shown. In order to obtain this contour plot it was necessary to compute eigen- 
values at 2500 mesh points. These calculations took roughly the same time as that 
required to find 5 eigenvalues to the same accuracy directly from the Orr-Sommerfeld 
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Reynolds number R6s 

FIG. 2. Temporal growth rates. 
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equation by the shooting method, and indicates an improvement of some 500 to 1 in 
computing speed, once all the A,, coefficients have been determined. 

It is quite straightforward to extend the analysis to incorporate oblique waves in 
the method. Squire’s [5] transformation provides the necessary link between an 
oblique mode of the form 

wexp i(ax + bz - wt) 

at a Reynolds number 8, and the two-dimensional mode 

exp i(f3.z - fit) 

having a Reynolds number R, through the relations 

2 = a2 + b2, 81ff = 44 and aR = ai?, (6) 

where a and b are the wavenumbers in the direction of the free stream and across 
the span, respectively. In the case of temporally growing waves, where all the wave- 
numbers are real, the application of this transformation is quite straightforward, R is a 
real quantity less than 8, and the growth rate of an oblique wave is given in terms of a 
two-dimensional wave at this lower Reynolds number. Waves growing spatially in 
the free-stream direction having real values of w and b, or more general modes with 
exponential behaviour in both space and time, also relate to two-dimensional ones, 
but with a complex ‘Reynolds number’ parameter R. The series expressions that 
have been developed for the calculation of two-dimensional eigenvalues are, in fact, 
valid for complex values of both (Y and R, and there is no difficulty in applying the 
series description to three-dimensional modes. The series may be written in the form 

$ = C C A,&aR - (aR)o>n(a2 f b2 - CG’>~. 
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FIG. 4. Spatial amplification rates. 

Reynolds number Ra* 

FIG. 5. Spatial amplification of oblique waves when b = Rd*ilm. 
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Reynolds number Rp 

FIG. 6. Spatial amplification when b = &*/NOO. 
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Figure 3 shows a set of “kidney” curves for the temporal amplification rate, /lj , 
plotted on an a - b plane for three values of the Reynolds number evaluated from 
the above series. 

Spatial growth in the stream direction is described by modes with a complex 
wavenumber, a, and real values of o and 6. These modes can be obtained from the 
series representation of w by using an iteration scheme arranged so that the wave- 
number is found for a specified real w, b, and Reynolds number R. Figure 4, which 
shows these spatial amplification contours for two-dimensional modes (b = 0) also 
.contains 2500 grid points. The paths along which the real frequency w/R8* remains 
constant are shown as chain-dotted lines. Similar information for oblique spatially 
growing modes has also been calculated from the series for spanwise wavenumbers 
equal to b/R,* = 10,000 and b/R** = 5000, and these are shown in Figs. 5 and 6. 

7. DISCUSSION AND CONCLUDING REMARKS 

A series representation of the eigenvalue relationship for the locally parallel model 
of the Blasius boudary layer profile has been developed. It has been shown how 
cigenvalues can be determined to high accuracy from relatively few terms of this 
series with the aid of a nonlinear transformation to make the series more convergent. 
Although no new results have been obtained in this exercise the power and speed of 
the technique have been amply demonstrated. 

Slowly convergent series can often be rendered amenable to summation by a change 
of origin, and no doubt a suitable set of series expansions could have been derived 
in the present case to cover different regions of the 01~ and aR planes. In fact the 
transformation used here effectively removes the divergent behavior that arises from 
an inappropriate choice of origin. The radius of convergence of a series is defined 
as the ratio of the nth to the (n - 1)th term as n approaches infinity. In cases where 
the coefficients of the series are evaluated on a computer, rounding errors will even- 
tually limit the series to a finite number of terms, and estimates of the radius of 
.convergence have to be made from this finite sequence. Nevertheless, quite often the 
ratio of the magnitudes of successive terms seems to reach a well-defined limit after 
relatively few terms. An example of this behavior is provided by the A,, coefficients 
shown in Fig. 1 which exhibit a systematic decaying pattern for II and m above 
about 10. When a well-defined character is apparent in a series it is clearly efficient 
computationally to sum the tail of the series by analytical means. The nonlinear 
transformation that has been used here does in fact sum geometric series exactly; 
it will even give the “anti-limit” of an exponentially divergent series. Repeated 
application of the transformation filters out those components of the series that 
exhibit well-defined exponential or oscillatory behavior. The choice of origin should 
thus have little effect on the final result, although in practice rounding errors make it 
advisable to select an origin such that reasonably convergent series occur. The Shanks 
transformation is related to the PadC approximant which also has this invariant 
property. 
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Van Dyke [6] presents a number of examples where techniques for improving the 
convergence of a series are used to apparently “predict” the behavior of some function 
well outside the scope of the analysis used to form the original series. Nothing as 
ambitious is attempted here, all the results that are obtained can all be checked 
against direct solutions of the differential equation, and in no sense is the technique 
used to provide information that cannot be computed directly. It does not seem to be 
necessary to understand precisely how the transformation achieves this end; for our 
purpose it is sufficient that it does indeed improve the convergence of the series 
defining eigenvalues of the Orr-Sommerfeld equation over the range of parameters in 
which we are interested. Although there have only been a few isolated comparisons 
made between eigenvalues from the Shanks’ limit and those obtained directly from 
the differential equation, it seems that over the parameter space of interest in the 
instability problem estimates can be made to an accuracy of at least one part in 1O-s 
by applying the simple nonlinear transformation to the series formed from the diagonal 
summations. For all practical purposes this degree of accuracy is quite acceptable. 

The Shanks process effectively finds a pattern in the way the series develops and 
then evaluates the sum of the extrapolated sequence. To succeed it is essential that 
the truncated series used for this be very accurate. The contouring method of calculat- 
ing the coefficients of the expansion produces a finite series that exactly reflects the 
data points on the contouring circle, and the terms of highest degree may not be 
precisely equal to the truncated power series. This occurs when insufficient points are 
used to represent the behavior of the eigenvalues in the chosen region, and the coeffi- 
cients of the series become aliased by the remainder of the series that has necessarily 
been neglected. A small radius helps to overcome this problem, but difficulties can 
then arise through rounding errors which introduce other inaccuracies in the higher 
coefficients. Radii have been chosen here to provide a compromise between these 
conflicting requirements. 

Since all the circular contours in the C? and olR planes map onto closed simply 
connected circuits in the /3 plane, it is clear that there are no branch points within the 
chosen domain. There are, nevertheless, branch points outside the domain. In fact, 
originally somewhat larger circuits were chosen for the contouring procedure, and 
difficulty was experienced when the shooting process sometimes converged onto 
higher modes which had eigenvalues similar to those of the lowest mode. The 
series however it is summed, can only reflect the behavior of the eigenvalues 
from which the coefficients were formed. Attempts to extend the series evaluation 
into regions close to these branch points, where the eigenvalue relations cease to be 
analytic, are therefore likley to lead to erroneous results. The fact that Shanks’ trans- 
formation applied to the series renders it convergent in some of these cases does not 
imply that the resulting limit is a correct one. Incorrect limits occur in particular 
when the series is used to predict eigenvalues at high Reynolds numbers, where it can 
be expected that there will be a significant number of possible higher modes present [7]. 
The series in the form chosen will always be analytic, and it cannot represent the true 
eigenvalue behavior in those regions where the function is multivalued.Presumably by 
using a more appropriate expansion containing the necessary singular behavior, 
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in the manner of [3], the range of validity could be extended to cope with these 
situations. 

The nonlinear transformation that has been used to improve the convergence of the 
series representation of the eigenvalue relations is related to the Pade approximant, 
and it seems very likely that representation by these rational fractions offers a useful 
alternative scheme. Such an approach may well be computationally faster as well as 
being more convenient to implement. The formation of the expansion of the charac- 
teristic function in terms of Pad6 approximants in the three variables (a2, aR$/a) 
also offers the prespect of propertly identifying the zeros of the function and thus of 
obtaining a complete description of the higher modes. 

The series method can almost certainly be applied to other velocity profile shapes, 
and once the coefficients for a suitable family of profiles have been evaluated the 
calculation of the development of an instability wave around an aerofoil, say, can be 
reduced to a relatively simple set of operations. It is expected that the influence of 
boundary layer growth could also be incorporated in such an extension of the tech- 
nique, but so far this has not been attempted. The objective of this paper was to show 
that in cases where large numbers of eigenvalues need to be evaluated, it may be well 
worth considering the use of series expansions. 
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